基础概念回顾


基础定义

在物理学中,量子是物理量的最小的不可分的基本单位。比特是计算机术语,指信息量最小单位。 不同于经典比特,量子比特不再只能取值0或1,还可以处于0和1的任意比例叠加的中间态。

对量子比特进行的基本运算操作叫做量子门。

量子门分为单比特门和多比特门。 单比特门有Hadamard门、Pauli-X/Y/Z门和旋转X/Y/Z门等。二比特门既有受控的单比特门(例如CNOT门等)也有交换门。 通过受控等扩展方式,可以将单比特门和二比特门进一步扩展为多比特门。 注意,测量是一种特殊的量子门,它是不可逆的,会改变量子比特的状态。

任何量子算法,都是由这些基本的量子门组合得到的。

普适量子门的定义参见 常见量子逻辑门矩阵形式

QPanda接口函数

在QPanda-2.0中,量子门的定义函数形式如下:

QGate H(Qubit *qubit);

备注

输入参数为量子比特Qubit及其他参数,返回值为可以插入量子线路的量子门QGate。

在QPanda-2.0中定义的量子门种类非常丰富。特别地,QPanda-2.0中支持完全自定义的量子门U4门,它的接口函数同时有以下几种重载:

QGate U4(double alpha, double beta, double gamma, double delta, Qubit *qubit);
QGate U4(Qubit *qubit, double alpha, double beta, double gamma, double delta);
QGate U4(QStat &matrix, Qubit *qubit);
QGate U4(Qubit *qubit, QStat &matrix);

如前文所述,量子门的接口函数有两种拓展操作:转置共轭和受控。两种操作都各有两种实现方式。

转置共轭操作的两种接口函数定义如下:

QGate gate = H(qubit);
QGate gate1 = gate.dagger();
gate.setDagger(true);

备注

dagger函数返回的是一个基于目标量子门的新量子门,setDagger返回的则是进行转置共轭后的目标量子门。

受控操作的两种接口函数定义如下:

QGate gate = H(qubit);
QGate gate1 = gate.control(QVec);
gate.setControl(QVec);

备注

区别与转置共轭操作类似,但受控函数入参是Qvec(qubit的vector)而非单个qubit。

实例

下面以一个程序实例,来展示基本的量子比特和量子门操作的代码实现。

#include "QPanda.h"
using namespace QPanda;

int main(void)
{
    auto qvm = CPUQVM();
    qvm.init();
    // 申请寄存器并初始化
    QVec q = qvm.qAllocMany(3);
    // 基于已有QVec定义
    QVec qubits = { q[0],q[1] };

    // 构建量子线路
    auto prog = QProg();
    prog << H(q[0])
        << H(q[1])
        << H(q[0]).dagger()         // 转置共轭
        << X(q[2]).control(qubits); // 受控

    // 以概率方法输出结果量子态的理论值(并非测量)
    auto result = qvm.probRunDict(prog, q);

    // 输出结果
    for (auto& aiter : result)
    {
        cout << aiter.first << " : " << aiter.second << endl;
    }

    return 0;
}

输出结果应如下所示,分别以0.5的概率得到 \(\left|0\right\rangle\)\(\left|2\right\rangle\)

000 : 0.5
001 : 0
010 : 0.5
011 : 0
100 : 0
101 : 0
110 : 0
111 : 0

以上就是量子比特和量子门的基本定义和在QPanda-2.0中的调用介绍。